Biden’s Industrial Ambition Requires Immigration Reform

The President is using an Ohio microchip plant as the poster child for an industrial renaissance with immigrants as the focus. Keep reading to learn more. 

Just 15 minutes outside of downtown Columbus, the suburbs abruptly evaporate. Past a bizarre mix of soybean fields, sprawling office parks and lonely clapboard churches is a field where the Biden administration — with help from one of the world’s largest tech companies — hopes to turn the U.S. into a hub of microchip manufacturing.

The Plan

In his State of the Union address in March, President Joe Biden called this 1,000-acre spread of corn stalks and farmhouses a “field of dreams.” Within three years, it will house two Intel-operated chip facilities together worth $20 billion — and Intel is promising to invest $80 billion more now that Washington has sweetened the deal with subsidies. It’s all part of a nationwide effort to head off another microchip shortage, shore up the free world’s advanced industrial base in the face of a rising China and claw back thousands of high-end manufacturing jobs from Asia.

But even as Biden signs into law more than $52 billion in “incentives” designed to lure chipmakers to the U.S., an unusual alliance of industry lobbyists, hard-core China hawks and science advocates says the president’s dream lacks a key ingredient — a small yet critical core of high-skilled workers. It’s a politically troubling irony: To achieve the long-sought goal of returning high-end manufacturing to the United States, the country must, paradoxically, attract more foreign workers.

For high-tech industry in general — which of course, includes the chip industry — the workforce is a huge problem,” said Julia Phillips, a member of the National Science Board. “It’s almost a perfect storm.”

From electrical engineering to computer science, the U.S. currently does not produce enough doctorates and master’s degrees in the science, technology, engineering and math fields who can go on to work in U.S.-based microchip plants. Decades of declining investments in STEM education means the U.S. now produces fewer native-born recipients of advanced STEM degrees than most of its international rivals.

Foreign nationals, including many educated in the U.S., have traditionally filled that gap. But a bewildering and anachronistic immigration system, historic backlogs in visa processing and rising anti-immigrant sentiment have combined to choke off the flow of foreign STEM talent precisely when a fresh surge is needed.

Powerful members of both parties have diagnosed the problem and floated potential fixes. But they have so far been stymied by the politics of immigration, where a handful of lawmakers stand in the way of reforms few are willing to risk their careers to achieve. With a short window to attract global chip companies already starting to close, a growing chorus is warning Congress they’re running out of time.

“These semiconductor investments won’t pay off if Congress doesn’t fix the talent bottleneck,” said Jeremy Neufeld, a senior immigration fellow at the Institute for Progress think tank.

Given the hot-button nature of immigration fights, the chip industry has typically been hesitant to advocate directly for reform. But as they pump billions of dollars into U.S. projects and contemplate far more expensive plans, a sense of urgency is starting to outweigh that reluctance.

“We are seeing greater and greater numbers of our employees waiting longer and longer for green cards,” said David Shahoulian, Intel’s head of workforce policy. “At some point it will become even more difficult to attract and retain folks. That will be a problem for us; it will be a problem for the rest of the tech industry.”

“At some point, you’ll just see more offshoring of these types of positions,” Shahoulian said.

A Booming Technology

Microchips (often called “semiconductors” by wonkier types) aren’t anything new. Since the 1960s, scientists — working first for the U.S. government and later for private industry — have tacked transistors onto wafers of silicon or other semiconducting materials to produce computer circuits. What has changed is the power and ubiquity of these chips.

The number of transistors researchers can fit on a chip roughly doubles every two years, a phenomenon known as Moore’s Law. In recent years, that has led to absurdly powerful chips bristling with transistors — IBM’s latest chip packs them at two-nanometer intervals into a space roughly the size of a fingernail. Two nanometers is thinner than a strand of human DNA, or about how long a fingernail grows in two seconds.

A rapid boost in processing power stuffed into ever-smaller packages led to the information technology boom of the 1990s. And things have only accelerated since — microchips remain the primary driver of advances in smartphones and missiles, but they’re also increasingly integrated into household appliances like toaster ovens, thermostats and toilets. Even the most inexpensive cars on the market now contain hundreds of microchips, and electric or luxury vehicles are loaded with thousands.

It all adds up to a commodity widely viewed as the bedrock of the new digital economy. Like fossil fuels before them, any country that controls the production of chips possesses key advantages on the global stage.

In Columbus, just miles from the Johnstown field where Intel is breaking ground, most officials don’t mince words: The tech workers needed to staff two microchip factories, let alone eight, don’t exist in the region at the levels needed.

“We’re going to need a STEM workforce,” admitted Jon Husted, Ohio’s Republican lieutenant governor.

But Husted and others say they’re optimistic the network of higher ed institutions spread across Columbus — including Ohio State University and Columbus State Community College — can beef up the region’s workforce fast.

Contact Sintsirmas & Mueller Co. L.P.A. today for more information.

Categories